FLIC: Fast linear iterative clustering with active search
نویسندگان
چکیده
منابع مشابه
FLIC: Fast Linear Iterative Clustering with Active Search
Benefiting from its high efficiency and simplicity, Simple Linear Iterative Clustering (SLIC) remains one of the most popular over-segmentation tools. However, due to explicit enforcement of spatial similarity for region continuity, the boundary adaptation of SLIC is sub-optimal. It also has drawbacks on convergence rate as a result of both the fixed search region and separately doing the assig...
متن کاملCOBRAS: Fast, Iterative, Active Clustering with Pairwise Constraints
Constraint-based clustering algorithms exploit background knowledge to construct clusterings that are aligned with the interests of a particular user. This background knowledge is often obtained by allowing the clustering system to pose pairwise queries to the user: should these two elements be in the same cluster or not? Active clustering methods aim to minimize the number of queries needed to...
متن کاملA robust iterative refinement clustering algorithm with smoothing search space
Iterative refinement clustering algorithms are widely used in data mining area, but they are sensitive to the initialization. In the past decades, many modified initialization methods have been proposed to reduce the influence of initialization sensitivity problem. The essence of iterative refinement clustering algorithms is the local search method. The big numbers of the local minimum points w...
متن کاملActive learning framework with iterative clustering for bioimage classification
Advances in imaging systems have yielded a flood of images into the research field. A semi-automated facility can reduce the laborious task of classifying this large number of images. Here we report the development of a novel framework, CARTA (Clustering-Aided Rapid Training Agent), applicable to bioimage classification that facilitates annotation and selection of features. CARTA comprises an a...
متن کاملDeep Linear Coding for Fast Graph Clustering
Clustering has been one of the most critical unsupervised learning techniques that has been widely applied in data mining problems. As one of its branches, graph clustering enjoys its popularity due to its appealing performance and strong theoretical supports. However, the eigen-decomposition problems involved are computationally expensive. In this paper, we propose a deep structure with a line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Visual Media
سال: 2018
ISSN: 2096-0433,2096-0662
DOI: 10.1007/s41095-018-0123-y